Projectable Multivariate Refinable Functions and Biorthogonal Wavelets

نویسنده

  • Bin Han
چکیده

A biorthogonal wavelet is derived from a pair of biorthogonal refinable functions using the standard technique in multiresolution analysis. In this paper, we introduce the concept of projectable refinable functions and demonstrate that many multivariate refinable functions are projectable; that is, they essentially carry the tensor product (separable) structure though themselves may be non-tensor product (nonseparable) refinable functions. For any pair of biorthogonal refinable functions (φ, φ) in L2(R), when the refinable function φ is projectable, we prove that without loss of several desirable properties such as spatial localization, smoothness and approximation order, from the pair of biorthogonal refinable functions (φ, φ), we can easily obtain another pair of biorthogonal refinable functions in L2(R) which are tensor product separable refinable functions. As an application, we show that there is no dual refinable function φ to the refinable basis function in the Loop scheme such that φ can be supported on [−4, 4].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Multivariate Biorthogonal Wavelets by CBC Algorithm

In applications, it is well known that short support, high vanishing moments and reasonable smoothness are the three most important properties of a biorthogonal wavelet. Based on our previous work on analysis and construction of optimal fundamental refinable functions and optimal biorthogonal wavelets, in this paper, we shall discuss the mutual relations among these three properties. For exampl...

متن کامل

Projectable Multivariate Wavelets: Separable vs Nonseparable

Tensor product (separable) multivariate (bi)orthogonal wavelets have been widely used in many applications. On the other hand, non-tensor product (nonseparable) wavelets have been extensively argued in the literature to have many advantages over separable wavelets, for example, more freedom in design of nonseparable wavelets (such design is typically much more complicated and di±cult than the a...

متن کامل

Construction of biorthogonal wavelets from pseudo-splines

Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight fra...

متن کامل

Popular Wavelet Families and Filters and Their Use

Glossary 5 Introduction 6 Definition of Wavelets 7 Definition of Filters 8 Multi-Resolution Analysis 9 Wavelet Decomposition and Reconstruction 10 Refinable Functions 11 Compactly Supported Orthonormal Wavelets 12 Parameterization of Orthonormal Wavelets 13 Biorthogonal Wavelets 14 Prewavelets 15 Tight Wavelet Frames 16 Tight Wavelet Frames over Bounded Domain 17 q-Dilated Orthonormal Wavelets ...

متن کامل

Quincunx fundamental refinable functions and quincunx biorthogonal wavelets

We analyze the approximation and smoothness properties of quincunx fundamental refinable functions. In particular, we provide a general way for the construction of quincunx interpolatory refinement masks associated with the quincunx lattice in R2. Their corresponding quincunx fundamental refinable functions attain the optimal approximation order and smoothness order. In addition, these examples...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002